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Finite-Size Effects in Surface Tension: 
Thermodynamics and the Gaussian Interface Model I 

Martin P. Gelfand 2 and Michael  E. Fisher 2 

It has been suggested by Kayser that finite-size effects associated with capillary 
waves might play a significant role in some surface tension measurements; for 
capillary rise between plates a distance D apart, an effect varying as lID and 
apparently observable in measurements, was proposed. In reconsidering this 
problem, one must analyze the thermodynamics of finite-size corrections to sur- 
face tension. In particular, one sees that capillary rise between plates does not 
measure the interfacial free energy density but, rather, a derivative of the inter- 
facial free energy with respect to a system dimension. The quantity needed to 
draw definite conclusions, the "finite-size residual" free energy, can be calculated 
within the harmonic or Gaussian capillary wave model in d spatial dimensions 
with the aid of Poisson summation techniques and should yield the correct 
leading asymptotic behavior. For d =  3 and experimentally relevant parameter 
values, the results are independent of the short-wavelength cutoff needed in the 
model and can be checked against the theory of conformal covariance at two- 
dimensional critical points. It is found that the finite-size effects in capillary-rise 
measurements of surface tension vary as 1/D 2 (with a universal coefficient) but 
are too small to be seen in current experiments. 

KEY WORDS: capillary rise; capillary waves; finite-size effects; Gaussian 
model; surface tension. 

1. I N T R O D U C T I O N  

The theory of finite-size effects in the vicinity of critical points has been a 
subject of great interest [1] since its original formulation nearly two 
decades ago [2]. It has proven valuable in the analysis of Monte Carlo 
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and other theoretical studies of relatively small model systems, from which 
one wishes to estimate asymptotic critical behavior for infinite systems. 
However, the theory has had little application to experimental  systems (a 
notable exception is the lambda transition in helium confined to small 
pores [3, 4]). Thus our interest was stimulated by a paper by Kayser [5], 
which suggested that finite-size effects in the surface tension of a fluid may 
have been evident in an experiment of Moldover and Gammon [6], who 
measured capillary rise between narrowly spaced plates. The observations 
are described in more detail shortly. 

We have studied the issue theoretically: regrettably, our analysis shows 
that the proposed finite-size effects in surface tension are too weak to be 
measurable in the Moldover-Gammon experiment. An essential element of 
the discussion is an analysis, in Section 2, of the thermodynamics of finite- 
size effects in observations of surface tension. However, thermodynamic 
considerations alone are insufficient to draw definite conclusions about the 
character of the finite-size effects; rather, it turns out, one must calculate a 
quantity we have dubbed the "finite-size residual" of the interfacial free 
energy. To this end we have examined in detail a basic statistical 
mechanical model for interface fluctuations, namely, the Gaussian model of 
capillary waves; see Section 3. Our calculations of the finite-size residual for 
the Gaussian model in a d'-dimensional "box" are sketched in Section 4 for 
a variety of boundary conditions, as well as in various asymptotic regimes. 
Applications of the results of these calculations to the question of finite-size 
effects in capillary-rise experiments are previewed at the end of Section 2; a 
summary and further applications are given in Section 5. 

Let us now consider the Moldover-Gammon experiment [-6] and see 
how the issue of finite-size effects in surface tension arises there. The 
experiment measured the capillary rise of liquid S F  6 in coexistence with its 
vapor between narrowly spaced plates at temperatures close to the bulk 
critical point, To. The plates formed a wedge with an extremely small 
opening angle (about 10 - 4  rad). Thus a single experiment was, in effect, 
able to study capillary rise for spacings varying from 1 to 3 #m. 

There are three relevant experimental facts. First, the classical formula 
for the capillary rise, h, was not obeyed. If D denotes the spacing between 
the plates, which, like h, varies very slowly along the total length of the 
plates, L, the classical expression is 

h = a2/D (1) 

where the capillary length is defined by 

ac = (2a/Afig) 1/2 (2) 
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with a the surface tension, Ar the mass density difference between the 
coexisting fluid phases, and g the gravitational acceleration. 

Second, if we let ~ denote the bulk correlation length, the condition 

~ D ~ a c ~ L  (3) 

was always well satisfied. This is, in fact, the usual criterion for the 
applicability of the classical capillary rise formula. 

Finally, most of the data could be well fit by a simple model in which 
D in Eq. (1) was replaced by a shifted spacing D - A .  Moldover and 
Gammon proposed that the shift A represented the effect of the wetting 
layers of liquid SF 6 on the glass plates which act to reduce the effective 
spacing. In fact A, defined this way, must depend on D (or, rather, self-con- 
sistently, on h) as well as T. For the range of D studied, A was nearly con- 
stant. Thus the wetting layers were responsible for corrections to the 
capillary rise formula of relative order l/D, roughly speaking. 

Although Moldover and Gammon's model appeared to fit the data 
well, one key fitted parameter--the strength of the van der Waals interac- 
tion between glass and SF6--came out to be approximately 50 times larger 
than had been expected. Furthermore, the expected value was later confir- 
med experimentally [7]. This discrepancy was only partly reduced by the 
theoretical work of Legait and de Gennes [8], who took into account 
interactions between the wetting layers which had been neglected 
previously. It is possible that the remaining discrepancy is due to 
systematic errors in the experimental determination of D. However, it is 
also worth considering [5] whether the problem might lie in a size depen- 
dence of ac or, more specifically, that a itself might have corrections of 
order 1/17. 

Such a finite-size effect seems quite plausible, at first glance. For an 
interface of dimensions LI x L2, one ought to expect rather generally to 
find edge/surface corrections to the interracial free energy density of order 
1ILl and 1/L 2. Furthermore, as we note in Section 3, the liquid-vapor 
interface constitutes a critical system even when the bulk is effectively non- 
critical ( ~ D ) .  Thus it is reasonable to anticipate an even stronger 
influence on the surface tension due to the boundaries. This is one of the 
issues we address below: however, our conclusion is that with regard to the 
experimental determination of surface tension, only 1/172, i.e., much 
smaller, corrections should be present. 

2. T H E R M O D Y N A M I C S  O F  FINITE-SIZE EFFECTS 

As a first step, we discuss some aspects of the thermodynamics of 
finite-size effects in surface tension or, more generally, in free energy den- 
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sities such as overall pressure, line tension, and step free energy. The basic 
fact to be emphasized is that different ways of measuring surface tension, 
which will all agree in the thermodynamic limit, may entail quite different 
finite-size corrections. Then the question naturally arises: What exactly is 
measured by a capillary-rise observation? We attempt to answer this via an 
idealized treatment which ignores the wetting layers even though we know 
these do have a marked effect. Such a treatment should, nonetheless, 
describe the leading behavior of the corrections due to finite size per se. We 
are led to define a "finite-size residual," which is found to be the essential 
quantity to be understood. 

Consider a system confined to a rectangular region of dimensions 
L1 x ... La,. Of present interest is an interface in d spatial dimensions, with 
d ' = d - 1  and area A = L  l . . .La , .  However, our considerations apply 
equally to bulk systems (with d ' =  d), steps on interfaces ( d ' =  d - 2 ) ,  etc. 
As the L s ~ ~ ,  we expect that the total interfacial free energy, Fz, should, 
in leading order, vary simply as Aa, where a is the true, limiting bulk inter- 
facial tension. The difference ( F z - A a )  should then be dominated by the 
boundary or line tensions, say �89 1 :f2,..., associated with the various edges 
or (d ' -1)-dimensional  "faces." Next, provided d ' >  2, will come further 
terms with coefficients f1,2, fl,3, etc. In sum we are led to define F~ xt), the 
extensive part of the total free energy, via 

+ (Ld'f~,..,d'--~ + "" ") (4) 

where for S, a proper subset of { 1 ..... d'}, the fs  are equal (up to com- 
binatorial or averaging coefficients) to the corresponding extensive boun- 
dary free-energy densities. Finally, the difference between Fz and the sum 
of its extensive components is the finite-size residual 

~t= Fz - -  F~2 xt) (5) 

Note that ~ will, in general, depend not only on the temperature, relative 
chemical potential, etc., and on the detailed boundary conditions, just like 
all the fs ,  but also on the full set of L j, although, asymptotically, it must be 
much smaller that any of the Lj. 

For concreteness, consider the realistic case d ' =  2, and ask "What is 
the surface tension in a finite system?" One natural answer is that it is the 
overall the surface free energy density, namely, for d ' =  2, 

Fz = cr + f l  + f 2 q .  
a~o)- - f f  -~1 L2 L ,L2  (6) 
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However, a response motivated more by mechanics is that the tension is 
the appropriately normalized force exerted by the system on a pair of 
opposing boundary walls. Thus we may define 

1 0 F s  + f2 + 1 c~N 
0"(t) = L 2 OL---7 - a L2 L2 OL 1 (7) 

and, likewise, o-c2 ). 
As L 1 and L 2 become infinite, both o-c0) and ao) approach the true sur- 

face tension, a; but they are clearly distinct for finite systems. Thus take 
Lz/L 1 >)> 1, and consider the dependence on L1. Then o-m)(L~)~ a +fl/L~; 
however, to learn anything about o-(1)(L1) we must know something about 
~.  If one has ~..~ -rIL2/L~, as turns out for the case describing the 
Moldover-Gammon experiment, then ao)(L1).~a+r~/L~, where r~ is a 
constant. Thus o-ca) has much weaker finite-size corrections than a<o). 

Which surface tension belongs in the capillary-rise formula (1), o-, 
am), o-o), or something else? Following the standard derivation (see, e.g., 
Refs. 9 and 10), capillary-rise results from a balance between the pressure 
difference Ap across a cylindrical interface of radius R = D/2 and the 
gravitational pressure Afigh. (One assumes h >> R, so that the variation of 
the gravitational pressure at different points on the interface may be neglec- 
ted.) To determine zip, one extremalizes the total grand potential for the 
system composed of a cylinder of fluid 7 surrounded by fluid/3, namely, 

(2 = p~ V~ + p~ Va + o-A (8) 

by setting c?f2fi?R = O. Straightforward algebra and geometry then yield 

z i p  - -  p ~  - p ~  = O - ( ~ A / ~ V ~ )  = o - / R  (9) 

To elucidate possible finite-size corrections, we must improve this 
derivation. In the first place Eq. (8) should be replaced by 3 

(2= p~V~ + paV~+ Fr (10) 

It is also helpful to consider fluid c~ and fluid/3 when separated by a thin 
planar barrier which is only broached along a slit of width D = 2R, through 
which fluid a protrudes as a result of a pressure differential, zip, so that the 
e/3 interface forms a cylinder of semicircular cross section. After 
manipulations analogous to those leading to Eq. (9), one finds 

zlp = o-cl)/R (11) 

3 Finite-size effects associated with the bulk terms are neglected here; see below. 
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Note that L1 appearing in the definition of at1) now represents the length, 
2D/n, of the curved, semicircular cylindrical interface created in an ideal 
capillary-rise experiment (with no wetting layers). [We should note that 
our neglect of so-called curvature corrections to the surface tension is 
deliberate. A thorough discussion of this issue would lead too far afield, but 
the reader should be warned that much of the literature on this topic is 
misleading.] 

In retrospect, it is not surprising that a(1) is the surface tension probed 
by capillary rise, since the phenomenon is essentially one of mechanical 
balance. In consequence, as noted following Eq. (7), the effects of finite size 
in capillary observations are controlled by the nature of the finite-size 
residual. 

What can be said about ~?  Quite generally, if all the system dimen- 
sions Lj are much greater than the correlation length ~, and long-range 
forces play no role, one expects ~ ~ e-L/~, with L a length related to the 
smallest of the Lj. This assertion is grounded in exact calculations for a 
variety of models, such as the two-dimensional Ising model [11], the 
spherical model [12, 13], and ideal quantal gasses [13], as well as the 
Gaussian model (see Section 4). 

When ~ decays exponentially with system size, it may, for most 
purposes, be ignored entirely. Indeed, since L1, L2 ~> r in the Moldover- 
Gammon experiment, this justifies our neglect of finite-size corrections to 
the bulk terms in the grand potential in Eq. (10). If ~ were the only 
significant correlation length in a system composed of two phases with an 
interface between them, we would conclude that finite-size corrections to 
a(1) should be exponentially small in D [aside from the O(1/L2) term, 
which should normally also be negligible]. However, as stressed below, 
there is, in fact, another correlation length, associated specifically with the 
interface, which is not small relative to L,. Thus further calculations are 
required to obtain the corrections to a(1). 

The results merit discussion at this point. As mentioned, we find 
Aa(~)=a(1)-a,,~l/L~; indeed, for T<Tc and sufficiently large D, the 
finite-size effects may be cast in the form 

A~r(1) ~- ~o (12) 
o" 

where co= limr~ T;- kBT/6~a~ 2~- 0.55 is expected to be universal [14]. In 
the Moldover-Gammon experiment, this correction is too small to be 
detected: at the smallest D and largest r studied, it should produce at most 
a 0.4% effect on the capillary rise. In practice, Eq.(12) probably 
systematically overestimates Art(l);  see the discussions of nonideal boun- 
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daries in Sections 3 and 4. Finite-size effects associated with the surface 
tension are thus negligible compared to the effects of wetting layers and do 
not resolve the present discrepancy between theory and experiments on 
capillary rise between narrowly spaced plates. 

3. THE GAUSSIAN M O D E L  OF CAPILLARY WAVES 

It has been recognized [-15] for over two decades that capillary waves 
of long wavelength are the dominant low-energy fluctuations specifically 
associated with the presence of an interface. To describe those asymptotic 
features of the statistical mechanics of an interface which reflect the 
capillary waves, it is appropriate to use an effective Hamiltonian which is a 
functional of z(y), the local transverse deviation of the interface from its 
mean position z=O at a point y in the "plane" of the mean interface [16]. 
The corresponding Hamiltonian incorporates (a) the increase in local 
interracial energy proportional to {(1 + [Vzl2) 1/2- 1} and (b) changes in 
local gravitational potential energy, varying as �89 2. To describe the 
interesting long-wavelength behavior it suffices to expand in powers of Vz 
and retain only the leading term [-16]. One is thus led to the Gaussian 
model effective Hamiltonian 

1 
~ --~ a f dy[- IVzl 2 + (z/~ll) 2] (13) 

in which ~ II = ar embodies the capillary length. 
Various remarks regarding Eq. (13) are in order. (i) It is supposed that 

the bulk phases are noncritical so that ~ is finite. Only fluctuations on 
length scales much greater than ~ are correctly described by Eq. (13). (ii) 
Since ~G is Gaussian, one readily finds for an infinite system that the 
correlation function (z(0) z (y) )  decays as e x p ( -  [Yl/~ll)- Thus ~ll is, in 
fact, the relevant correlation length for the interface. Now the capillary 
length is typically a few millimeters, so one sees that  the interface between 
two fluids should be regarded as a critical system: if the bulk correlation 
length of a fluid were as large, one would have I T - T d / T c  ~-10 12, thus 
being at criticality as far as thermometry can currently specify! 

(iii) As written, J~fG is inadequate thermodynamically. Some high- 
wavenumber cutoff must be imposed so that the capillary wave or 
Gaussian free energy 

F~ = --kB Tin Tr {exp[- - ~ G / k B  T] } (14) 

exists. The presence of a cutoff reflects the renormalization or coarse 
graining up to some length scale larger than r which is implicit in the 
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derivation of ~ [16]. (iv) Since the statistical variable z(y) has dimen- 
sions of length, one needs a reference length, say a• to render the trace 
operation in Eq. (14) dimensionless. (v) The surface tension, a, in Eq. (13) 
should be the true limiting bulk surface tension, not some "bare" surface 
tension (as proposed, for example, in Refs. 5 and 15). It transpires, 
however, that the results of principal interest here will be quite independent 
of a (provided it is neither zero nor unbounded). Accordingly, we comment 
no further on this issue. (vi) It is assumed, as is true for fluid-fluid inter- 
faces, that the surface tension is independent of the orientation of the inter- 
face so that the "interfacial stiffness" is equal to a [17]. 

Consider now the choice of cutoff. A recognition of the finiteness of 
atomic or molecular sizes suggests the use of a spatial lattice. Thus the 
values of y may be restricted to a d'-dimensional hypercubic lattice with 
spacing a, that is, yi = lga, with Ii= 0,..., N i - 1  and Lg = Nia. This is also 
mathematically clean. If M = [Mgj] is the corresponding lattice Laplacian 
matrix, 4 one has 

1 
Jfc =-~ aaWzT(a-2M + ~IT 2I) z (15) 

where z is the vector of values z(y) at the discrete points y. Performing the 
Gaussian trace integrals implicit in Eq. (14) yields 

_ 1 k T ~  ln(ti2)~q) (16) F~-~ B 
q 

where 4 2 = a~ ad'a/2z&B T, while the •q a r e  the eigenvalues of - a -  2M + r 21" 
The eigenvalues depend on the boundary conditions. For what we 

may term "ideal" boundary conditions, they have the form 

2+ 1 ~ ( l _ c o s q i a )  (17) 
i = 1  

with the allowed q values forming a regular hyperrectangular lattice in d' 
dimensions. Thus, for periodic boundary conditions (with Nj odd) one has 

q;=27tmjLj, mj=0 ,  +_1 ..... ___ ( N j - 1 ) / 2  (18) 

Fixed or clamped boundaries, z = 0 at yj = 0, (N + 1 ) a, yield 

qj=mflt/Lj,  mj= 1, 2 ..... Nj (19) 

4 Wi th  Mii = - 2 d ' ,  M o = 1 if [ Yi - Yjl = a, bu t  M~ = 0 otherwise,  p rov ided  nei ther  yi nor  y; is 

on  the boundary .  On the boundar i e s  M o. depends  on the precise condi t ions.  
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while free boundary conditions at y j=a,  (Nj+ 1)a have the similar 
spectrum 

q/= mjc/Lj, mj = O, 1,..., Nj - 1 (20) 

Antiperiodic boundary conditions and mixed boundaries, for which z is 
clamped on one side and free on the other, also yield regular lattices of 
modes in q-space. The form of Eq. (17) continues to hold if the various 
conditions apply to different pairs of opposing boundaries. 

One can also handle theoretically nonideal boundaries, for which the 
qj are not uniformly spaced. For example, one might fix z ( y j = 0 ) =  
z(yj = Lj + a ) =  0 and also alter the coupling between the layers yj = 0 and 
yj = a and between yj = Lj and yj = Lj + a. In such cases, the qj are roots of 
a sequence of transcendental equations. Asymptotically, however (when 
Nj ~ ~ at fixed m/), the effect on the qj amounts simply to a shift in Lj by 
some fixed 5/. 

For a fluid interface it can be argued that a lattice cutoff is somewhat 
unnatural since it destroys both translational and rotational invariance 
(although both are restored at long wavelengths). All one may wish to 
assume, beyond the cutoff's existence, is a definite associated length scale a 
(which, for f ixed bulk correlation length (, may be identified as a multiple 
of (, as proposed by Kayser [5], among others). For these reasons we 
focus only on cutoff-independent aspects of the model, which, fortunately, 
include the leading behavior of the residual ~.  

For concreteness and simplicity we replace the true lattice cutoff 
[embodied in Eqs. (16) and (17), with the appropriate set of wavevectors] 
by using the approximation 

1 kB T ~  ln[a2(q2 + (172)3 U(q) (21) ro=5 
q 

The set of wavevectors in the sum is taken to be those determined above by 
the various ideal boundary conditions, except that the mj are allowed to 
run up to infinity. The cutoff is now contained entirely in the spherically 
symmetric function U(q). In order that the basic properties of the sum- 
mand at small q are properly preserved, we assume a convergent expansion 

U(q) = 1 + u2q 2 + u4q 4 -t- " ' "  (22) 

It is also important that the cutoff function be well behaved physically in 
real space. Thus U(q) must be smooth for all q: a sharp cutoff (such as 
proposed in Ref. 5) is not satisfactory since it implies long-ranged 
oscillations in real space which can yield quite misleading results. It suffices 
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to assume that U(q) is monotonically decreasing in Iql, that it decays at 
least exponentially fast as q ~ ~ ,  and that its analytic continuation into 
the complex plane is regular in a strip of width of order 1/a about the real 
axis. 

What remains now is a mathematical task: in the following section we 
sketch the calculation of ~ within the Gaussian model in a variety of cases. 
A reader interested only in the physical results may skip the details but 
should note that, except for exponentially small corrections, the desired 
finite-size residual for Fz should be the same as that for FG. 

4. CALCULATING THE FINITE-SIZE RESIDUAL 

Systematic calculations of the finite-size residual are noticeably absent 
from the literature on finite-size effects in the Gaussian model 
1-18, 191--the focus of most calculations has been on the extensive boun- 
dary terms. Thus, for the sake of completeness, we go beyond our mandate 
to calculate ~ for experimentally relevant situations. 

Consider, first, periodic boundary conditions which are the most 
straightforward because all terms beyond the first in Eq. (4) are absent. The 
formal expression is simply 

- A  

with the wavevectors in the sum given by Eq. (18) but with mj = 0, +_ 1,.... 
Note that here and below we omit the factors of ~i needed to render dimen- 
sionless the arguments of the various logarithms: It is appropriate to 
discuss the asymptotic behavior of ~ in three regimes distinguished by the 
relative magnitudes of the Lj and the interfacial correlation length ~ II: 

(A) Large blocks are systems with ill ~ Lj for all j. The asymptotic 
behavior of N then follows from the Poisson summation formula (see, e.g., 
Ref. 20): generalized to d' dimensions it states 

Z f[(2rcmJLy)] = A ~ fl-(Ljmj)] (24) 
m n l  

with m running over all d'-tuples of integers and the Fourier transform 
being 

I dq e_/ .  k f ( k ) =  ~ f(q) (25) 

If one moves the m = 0  term from the right to the left in Eq. (24), it 
becomes evident that the leading asymptotic behavior of ~ as the Lj ~ oo 
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is determined by the decay of the Fourier transform f (k )  of 
ln(q2+~l~ 2) U(q) at large values of Ik[. By shifting the contours of 
integration, this in turn follows from the location and nature of the 
singularity of f(q) Closest to the real axis. Since we suppose that any 
singularity of U is further from the real axis than the singularities of 
ln(q 2 + ~lr 2) at q = __+i~IT 1, the controlling factor i n f (k )  at large k is e k/e,j. 
Consequently, the controlling factor in ~ is 6' -Lmin/r where Zmi  n ~ minjLf  
a result entirely in accord with expectations. 

(B) General strips are characterized by ~ll<~LJ only for 
j=d++l, . . . ,d  ' but r for j =  l,.., d ~. With d ' = 2  and d r = l ,  this is 
appropriate for capillary rise between plates. The first step is to replace the 
sum over the components j = d t + 1,..., d'  of q in Eq. (23) with an integral, 
since this incurs only exponentially small errors. One then has a sum- 
minus-integral over q<, the first d* components of q, of a (d ' -d*)-  
dimensional integral which has q < as a parameter. The integral is singular 
although finite at q < = 0 (but analytic for all other real vectors q <). Thus 
Eq. (24) may again be applied. After some analysis, one finds that the 
leading behavior is 

A 
~ --kB Ty(d') ( r l . . .  La,) a'/a* E(lj) (26) 

with a universal amplitude given by 

f (2)  = 2 - ~ ( 1 -  ~.)/2F(2)/F(( 2 + 1 )/2) (27) 

while E(lj), with shape parameters lj = LJ(L1. . .  La,) l/a•, is a d*-dimensional 
Epstein zeta function [21] defined by 

E(lj)=Z' 
where the prime indicates that the 

For d ' =  2, d~= 1, this result 

I dt I d'/2 j~l m}l} (28) 

origin should be excluded from the sum. 
reduces to 

~ --kB T(zt/6)(L2/L, ) (29) 

in agreement with expressions based on conformal covariance [22, 23 ]. In 
this case we have checked not only that the terms omitted from Eq. (29) 
are of relative order L1/~jj compared to the one displayed, but also that 
O~/~LI [as needed in computing a(1)] is given by kBT(rc/6)(L2/L 2) plus 
negligible corrections. 

We note that the results obtained here by Poisson summation cannot 
be found simply by using the finite size of the system as a low-wavenumber 

840/9/5-7 
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cutoff on an integral, as done in Ref. 5. Such a procedure fails to account 
for crucial differences between various boundary conditions: at best, for the 
case of clamped boundaries, it gives the correct form for the extensive part 
of the free energy, Eq. (4), but even then it cannot yield the correct 
residual. 

(C) Small blocks have r for all j<~d'. The first step is to 
separate the q = 0 term from the sum in Eq. (23). For all other terms one 
has q2>> ~172, which motivates the overall decomposition 

ln(q 2 + CH 2) = In q2 + ln[1 + (q~,)-2] (30) 

The contribution from In q2 may be analyzed by a method detailed in 
Ref. 24 (slightly modified, in order to treat logarithmic rather than power- 
law singularities). The result is 

1 
~1 = d-- kB T[In(A/r + C(b ) + o(1)] (31) 

where now l j=LJ(L1.. .La,) 1/w so that C(lj) is a shape-dependent con- 
stant, or corner term. Note that the logarithmic prefactor is universal? The 
piece of ~ arising from ln[ 1 + (q~ 11)-2] may be bounded straightforwardly 
for Lj/~LI small. It proves to be of order Lmax/~11 for all d', and so leaves 
Eq. (31) unchanged as ~, ~ ~ .  

The leading behavior, Eq. (31), of ~ for small blocks (unlike strips) 
might not determine the leading behavior of derivatives such as O~/3L~ 
[since one can imagine corner terms C(lj) which, upon differentiation, 
dominate the order I/L, term arising from the logarithm]. We have not 
studied this problem carefully but the logarithmic term suffices for the 
leading behavior of shape-maintaining derivatives. 

For nonperiodic but ideal boundaries, the strategy is to rewrite Fo as a 
sum of free energies of periodic systems. We sketch one illustrative example 
here. 

For d ' =  2 and fixed boundaries, the wavevectors in the sum, Eq. (21), 
for r~xtr L2) lie in the first quadrant, excluding the axes, and are spaced 
z/Lj apart in the j t h  direction. Since q =  ( + q l ,  ---q2) yield identical con- 
tributions, one can equally write F~  x in terms of a sum over q in all four 
quadrants. Except for the missing values of q on the axes, we now have F~ 

5 Such universal logarithms may be expected to arise generally in critical systems [25]. In two 
dimensions the prefactor of In A is proportional to the central charge [26]. Both Ref. 25 and 
Ref. 26 conclude, however, that the logarithm should be absent for periodic boundaries. The 
Gaussian model appears as an exception, since unless the q = 0 mode is removed "by hand," 
the free energy at criticality diverges. 
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for a periodic system of size 2L1• 2L2. The wavevectors on the axis 
generate a capillary-wave free energy for a one-dimensional system. Thus, 
in an obvious notation, we obtain 

per / T p e r ( 2 f  pf, xtr L2)=J[F~r(2La,2L2)-Fo ( 2 L 1 ) - - ~  ,~21+Co] (32) ~ G  ~,~L'~ 1 ' 

where Co accounts for the zero mode, which would otherwise be double- 
counted in the two one-dimensional terms: the finite-size residual follows 
immediately. For a strip (L2 >> ~lr >> L1), one has 

/Z L 2 l 
~ - k B T 2 4 L I  4kaTlnL1 (33) 

where the second term is negligible relative to the first; for a small block 
one obtains 

~ 1  1 zka T(7 In L1 L 2  - -  In L1 - In L2) = -~kn Tln A (34) 

Of the remaining situations we quote a few specific results. For the 
d'= 2 strip with free boundaries the leading term in ~t is the same as for 
fixed boundaries, in agreement with the results from conformal covariance 
[22, 23], although the logarithmic term changes. Naturally, the leading 
behavior is also unaffected by the choice of boundary conditions on the 
short edges. [For mixed boundaries on the long edges, one must replace 
- z / 2 4  in Eq. (33) by +z/48.] In contrast, for small blocks all boundaries 
are of comparable importance. For example, for fully fixed or fully free 
boundary conditions on a small block, the leading term is 

~,-1 )~" 1 ln[1-[  Lj] (35) ~'~2-d'ka v E ( - 1  E d'-----n 
n~O iS] ~ n  j r  

where e = 1 for fixed boundaries but e=  0 for free boundaries, while [S] 
denotes the number of elements in a subset S of { 1,..., d' }. The one-dimen- 
sional result ~ ~ �89 Tin L for fixed boundaries can be obtained in many 
other ways [27, 28]. 

Finally, there is the problem of evaluating ~' when the boundaries are 
not ideal. There are many possibilities, but it is clear that what matters for 

is the spectrum of long-wavelength modes which enter the sums for F~ 
in Eq. (21) or (16). In real capillary-rise experiments, with wetting layers 
present, the capillary waves are suppressed as the layers decrease in 
thickness up the sides of the capillary. In effect, there is a position-depen- 
dent ~lr which takes its standard value on the main portion of the interface 
but decreases rapidly on moving up the wetting layers (as the square of the 
layer thickness, for nonretarded van der Waals interactions [29]). It seems 
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reasonable that a positive shift 61 in L1 (as described in Section 3) would 
account for this sort of nonideal boundary. However, we have not tried to 
estimate 61, although such a calculation seems feasible. 

5. C O N C L U S I O N S  

The thermodynamic analysis of capillary rise indicates that a "ten- 
sion," a(1) as in Eq. (7), rather than the interfacial free energy density, a(o~, 
is the finite-size surface tension relevant to capillary rise. Consequently, the 
finite-size residual free energy, rather than some edge energy, is responsible 
for any finite-size corrections to the surface tension which might be relevant 
in interpreting experimental results. However the results, based on the 
Gaussian model of capillary waves, displayed in Eq. (12), are too weak to 
be seen in the experiment of Moldover and Gammon.  

Finite-size effects associated with capillary waves should be relevant, 
however, in Monte Carlo simulations of surface tensions [30] and step free 
energies 1-31] in the Ising model [32]. [Note  that these simulations 
measure a(o/rather  than some mechanical tension.] The relevant result for 
these cases is Eq. (31); the logarithm here also has implications for the 
finite-size scaling behavior of surface tensions and step free energies near 
the critical and roughening temperatures, respectively [32]. 
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